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SELF-SIMILAR SOLUTIONS OF NAVIER-STOKES EQUATIONS FOR ROTATIONAL FLOW 
OF INCOMPRESSIBLE FLUID IN A ROUND PIPE* 

E.M. SMIF?NOV 

Self-similar solutions of Navier-Stokes equations are obtained for rotational and 
laminar flows in a round pipe with porous and impermeable walls. Longitudinal and 
circular velocity components are assumed to be linear functions of the longitudinal 
coordinate. The obtained system of ordinary differential equations is numerically 
integrated. Solutions for laminar flows are not unique in the investigated here 
range of parameter variation that defines the intensity of suction and injection of 
fluid. Solutions for rotational and laminar flows in pipes with porous walls,which 
are characteristic of the boundary value problem, are treated separately. Curvesof 
radial distribution of velocity components of rotational and laminar flows are pre- 
sented for several intensities of sucking and injection. Curves and tables of in- 
tegral characteristics of flow are also presented. 

Self-similar solutions of the Navier- Stokes equations for flows in a plane-parallel 
channel and of laminar flows in round pipes appeared in /l/ and /2/, respectively, on the 
assumption of porous channel and pipe walls and of the stream function being linearly depend- 
ent on the longitudinal coordinate. The self-similar solutions derived below are for rotation- 
al flows in round pipes with porous and impermeable walls. New solutions are obtained for 
laminar flows in pipes with impermeable walls. 

1. Assuming the flow in a round pipe of radius a to be steady and axisymmetric, we write 
the Navier-Stokes equations in the cylindrical system of coordinates z,r, E (with the x axis 
coinciding with the pipe axis) in the form 

where u,v,w are projections of the velocity vector on axes 5, r, E. 
We impose on solutions of system (1.1) the following boundary conditions along the r co- 

ordinate: 
&Jar = v = u? = 0, r = 0 

(1.2) 
u=w=o, v my -v, = const, T=s 

(1.3) 
where vg is the velocity of injection through the pipe walls. 

No conditions are imposed on the x coordinate, since our aim is to obtain a self-similar 
solution. 

2. We seek a solution of the problem of the form 

We introduce the stream function $ and write down 

(2.1) 

(2.2) 
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Solutions of the form (2.1) were considered in /2/ in the case of laminar flow g(q) = 0. 
Using (2.1) - (2.3) from Eq.Cl.1) we obtain 

from which 

l~=--~‘~~(~)a.Y(,,).;.~(q)] (2.4) 

Substituting (2.4) into the second of Eqs.Cl.1) we obtain formulas that relate Sand T 
to functions f and g 

S'= + ~~;~O~)~]‘-l~~ril~[(~)‘-~J}’ 

where the prime indicates differentiation with respect to q. After integration we obtain 

S=--7(11)-;-D, T;- L)= c0nsL (2.5) 

T -z + if)’ .’ f _ f (0) (2.6) 

We substitute (2.1)- (2.5) into the first and third equations of system (1.1) and write 
the system of equations and boundary conditions for functions f and g in the form 

f” + (1 + cp)f’/q -- f" - z + D = 0 (2.7) 
g" + (1 + cpk'lrl - (1 - 'p + ?Y)glr12 = 0 (2.8) 
!'=cp=g=o, q=o (2.9) 
f=g=O, q=l (2.10) 
cp = 7 = uOa/v = con&, q=l (2.11) 

Parameter y is positive for injection into and negative for suction from the pipethrough 
its porous walls. 

In the case of impermeable walls 

cp=o, q=l (2.12) 

we have the problem (2.7)- (2.12) for determining eigen functions corresponding to eigenvalues 

Dk. 
We have obtained here two characteristic solutions of the problem formulated above. The 

question of the over-all number of such solutions remains open. 
Note that in /1,2/ the stream function was assumed proportional to va and defined by 

the formula 
+ = %=rp,(ll) 

This representation of the stream function entails the impossibility of obtaining a non- 
trivial solution ($#O) in the case of impermeable walls when u,, =O. But the dimensional of 
combination ~a is that of the stream function, and that of combination v/a is that of velocity. 
These properties were used for writing the solution in the form (2.1)-(2.3) and, as shown be- 
low, enabled us to obtain solutions for rotational and laminar flows in a pipe with imperme- 
able walls and damped end face. 

3. Let us first consider the laminar flow g=z=o. Solutions for small and large y 
were obtained in /2/ by expanding in series in powers of parameter y or of its inverse, re- 
spectively. Using the data of /2/, we obtain for the longitudinal velocity component on the 
pipe axis f. = f (0) and constant D the expressions 
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fo=++~+O(y-‘)] (3.2) 

D = *,,a fla + 
C 

y + O(?+)] , 1 VI> 1 

It was shown in /3/ that as 1~ 1 t00 there exists a multiplicity of limit solutions of 
Eqs.(2.7) with boundary conditions (2.9)- (2.11): 

f=(- 2)“ny(2n + l)cus (2n + l)+fJ 
I 

(3.3) 

D = n*y2 (2n + 1)2, n = 0, 1, 2 . * . 

which for n = 0 correspond to the first terms of expansions (3.2). The existenceofsolutions 
(3.3) indicates that the solution of this problem is not unique, at least in some domains of 
parameter y variation. 

Here, solutions of the problem were obtained by numerical methods. 
Equation (2.7) is invariant to transformation 

ril = Bq, fl = f/P, (pl = rp, D, = D/B”, B = const (3.4) 

which makes possible the reduction of the formulated boundary value problem to the Cauchy 
problem. It is possible to specify fl(0) and D1, and determine y from the calculation re- 
sults. 

Integration was initially carried out from q,=O to point qi =qT at which function f1 
vanishes, i.e. satisfying condition (2.10). Integration was then extended beyond that point, 
since for certain values of the pair fi(0) and D,function fr vanishes for the second time al- 
ready for ql= ~l+)~lO. For other pairs of fi(0) and D, the absolute value of k monotonically 
increases to any arbitrary value. Vanishing of fi for the third time was not achieved. 

The step 11, of integration with respect to q1 was constant and selected (by iterations) 
so as to have fifty calculation nodes, not counting point Ili=Ot where the solution was ob- 
tained by expanding functions in power series within terms of order Q' inclusive. The 
obtained in this manner fi and 'pl for n,=h, were used as the initial values for integration by 
the Kutta-Runge method in the case of ql>b,. The conditions for fl to vanish when rll = qB 
or tk = rh* were obtained with the relative error 

6 = I fi ho) I / 1 fl Ima, < 1w 

The obtained functions fl,~l and the values of argument qL and of constant D were recal- 
culated using (3.4) for quantities without subscript. The recalculation coefficient was as- 
sumed to be q," or ql* and parameter y was determined by ql(ql') or q?* (ql*), respectively. 

The dependence of fo and u = v/Is&~ D on parameter y is shown in Fig.1, where solid 
lines relate to f. and the dash lines to a. It will be seen that solutions of the considered 
here problem are not unique for all values of y for which their derivation proved possible. 

-0a 
-II -9 -2 a Y 

Fig.1 Fig.2 Fig.3 

The values of f. and CF along branch 1 of solution with O<Y<l conform with those 
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calculated by formulas (3.1), and with increasing y continuously approach the values obtained 
from expansion (3.2). When y -=7.4311, solution 1 yields f0 = 25.571, D = 698.18. The longitud- 
inal velocity component profile is shown in Fig.2 by curve 1. 

When y <O and 171 <‘i, solution 1 also conforms with (3.1) but, as 1 y 1 increases, it 
no longer approaches that of (3.2), becoming another solution (branch 2) of the problem. 

Of particular interest are solutions 1 and 2 at points A and B, respectively. In the 
first of these D = 0 when y = -1.2065 which indicates constant pressure along a porous pipe. 
The profile of f(q) of solution at point A is close to that of Poiseuille. Point Bcorresponds 
to the solution of the Navier-Stokes equations for a rotational flow at the damped end of a 
round pipe with impermeable walls (y = 0). At point B f. = -35.315 and D = 348.68. The long- 
itudinal velocity component profile is shown in Fig.2 by curve 2. This solution is character- 
istic for the boundary value problem when y = 0. 

Curve 3 in Fig.2 shows the distribution of j(n) in the region of transition of solution 
1 to solution 2 (r = -2.2469, fo = -i3.385, D = ~9.6~). 

Twoother branches of the solution that transform into each other were obtained with para- 
meter p (-9.1126. Profiles of lonsitudinal velocity comnonent for the solution of branch 3 

with y = --10.026 and- f0 L--19.765, D = 533.49, and that of 
branch 4 with y = -11.083 and f. = 7.439, D = 442.70 are shown 
in Fig.2 by curves 4 and 5 respectively. 

Fig.4 

At point c solution 5 for the rotational flow, considered 
in Sect.4, branches off from solution 3 of the problem of lam- 
inar flow. 

Profiles of f are also shown in Fiq.3. Curve 1 relates to 
solution 3 withy = -27.279 (f. = -64.925, D = 4248.2) and indicat- 
es division of the flow field in the inviscid main stream with 

and the boundary layer whose thickness 
~n~s~~t~~t~~~easing 

dkm- 
I. 

/Yl* Curve 2 with (y = 7.3329,fo == 
-78.621, D = 1576.6) corresponds to a flow that can be consid- 
ered to be the stream generated by injection of fluid through 
the pipe porous walls in a direction opposite to the flow in 
it. Thickness of the stream also diminishes as y increases. 

In concluding the investigation of the laminar flow, we 
would point out that numerical calculations /4/ of the self- 
similar solution of the Navier-Stokes equations for flows in 
a plane-parallel porous channel (a is the channel half-height) 
have shown that this solution with y>O behaves similarly to 
the obtained here solution 1 for a round pipe, while continu- 
ously increasing in the region of y<fl with increase of Iy I, 
it passes, unlike in the case of a round pipe, from a solution 
with parabolic distribution f(q) to the solution for an inviscid 

flow with boundary layer, as obtained by the author in /5/. 

4. Let us pass to the rotational flow. A somewhat different calculation scheme was used 
for obtaining the solution of this problem. The boundary value problem (2.7)- (2.12) was 

solved by the method of ranging. The invariance of Eqs.(2.7) and (2.8) to transformation 

q1 = Bg, fl = fiBa, g, = glB2, ‘pl = cp, D1 = DIP, B = const (4.1) 

enables us to reduce by one the number of ranging parameters. 
Because of this, some arbitrary constant value was assigened in the process or rangingto 

gi (0) . The ranging parameters were h(n) and D,. Integration was carried out from 'I, = n 
to point Q=.*IP at which function fl vanished for the first or second time (depending on y), 
The unknown quantities fl(0) and D,were determined in conformity with the stipulation that 
conditions g,(nlr)=O, cpt(nl")= y must be satisfied with required accuracy. Newton's method was 

used for approximating the unknown j,(O) and D,. 
The selection of step and the determination of solution in the Q neighborhood were as 

in the derivation of solution in the case of laminar flow. Conditions fX=O.g,=O,cp,=Y for 

ql= q10 were satisfied with the relative error 6 = I z(~~“)//~z/~~~ <10-5, where z is any of func- 

tions ii. &, ml. 
The input functions f, g,(~ and constant 5 were determined by the simple recalculation in 

conformity with (4.1) with B=q,’ as the recalculation coefficient. 



Solutions of Navier-Stokes equations 627 

The results of solution of (2.7) and (2.8) were used for calculating the quantity 

that defines the moment of momentum transfer 

ad, also, the dimensionless rotation parameter 

alLI IhI o=-=- 
2nur" (a) Y" 

which is a combination of the moment of momentum stream, volume flow rate through a givencross 
section, and of the pipe radius. 

The calculated dependence of f (0), g’(O), D,h , and o on parameter y is tabulated below 

2747g z::.;s”; 0 
6.497i %Z 0 0 

--16.851 

15’ - 3:9667 18.835 256:98 -37.337 %% 

10.685 38.022 483.33 -54.789 2.1916 
-3 32.337 79.982 1662.0 
-2 47.695 98.832 

%X 
Z% 

7.8446 
19.460 

-1 67.941 137.18 
0 95.511 193.35 1074i 

-8'1:640 84.641 
-91.086 

2’ :;;:;: 
278.27 20433 
410.88 40097 1;;33;; 

z.335 
25.919 

Curves of longitudinal (solid lines) and circular (dash lines) velocity components are 
shown in Fig.4 for y = 0,-4, -8, -%ibig by curves l-4, respectively. 

Of particular interest is the solution obtained in the case of impenetrable pipe walls 
(y = 0) that is, also, the eigenvalue of the boundary value problem (2.7)- (2.10), (2.12). A 

flow conforming to that equation can be obtained by imparting to the fluid at some reasonable 
distance from the damped end of the pipe a moment of momentum, for instance, by tangential in- 
jection of a stream or by a rotating impeller. 

For y close to -9.i4iR the rotation parameter is small, and f(q) retains its sign,however, 
due to the fairly intensive sucking, the profile of f(n) is of saddle form. As y approaches 
zero with simultaneous increase of o, the trough in the profile of f(q) deepens near the axis 
due to the change of the pressure distribution field, induced by the stream rotation. The 
tabulated data indicate that when y= -6.39, to which corresponds o = 1.05, a reverse flow is gen- 
erated in the region close to the axis , which increases as Y continues to approach zero. When 
y<O the transfer of the mass of fluid as a whole is away from the device inducing rotation 

to the fluid, while for y>O the transfer is toward the latter. However, the first case is 
more interesting from the practical point of view. 
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